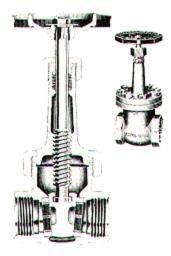

Class

200

Lunkenheimer Bronze Gate Valves 200 lb SP 550°F 400 lb WOG Union bonnet, Screw end



Rising stem Double wedge disc Union bonnet, 2 inches and smaller Bolted bonnet, 21/2 and 3 inches Fig 2228

Designed for rugged service applications, with maximum resistance to distortion produced by internal pressure.

Bodies Full, cylindrical design for maximum strength, made of corrosion resistant Steam Bronze. Figures 2227, 2228, and 2230 have identical bodies.

Seats Renewable and integral: Figure 2227 has <u>renewable</u> seat rings of Monel alloy in 1 inch and are large sizes; integral seats in smaller sizes. Figures 2228 and 2230 have precision tapered <u>integral</u> seats.

Rising stem Solid wedge disc Union bonnet 2 inches and smaller Bolted bonnet 21/2 and 3 inches Fig 2227

Discs Renewable nickel alloy. Three types available:

Double wedge Male-female construction. Adjusts readily to taper seats, sturdy collar strengthens disc-stem connection.

<u>Solid wedge</u> Accurately machined with disc-wing guides that conduct the disc to a firm, tight seat.

<u>Single wedge</u> Thread in disc engages stem thread, moving disc as stem is turned.

Non-rising stem Single wedge disc Union bonnet 2 inches and smaller Bolted bonnet 2½ and 3 inches Fig 2230

Bonnets Sizes 2" and smaller have union bonnet connection; $2\frac{1}{2}$ " and 3" have bolted bonnets

Stems Resistant to wear, corrosion and embrittlement. Long, accurately machined threads provide full thread contact. Heavy, disc-stem connection withstands wearing action when opening valve and prevents stem failure under strain.

Repacking Stuffing boxes are deep and valves are repackable under pressure when wide open. Back seats above stem threads make scale formation unlikely and provide a tight seal.

Hexagon head glands Permit the use of a light wrench to loosen and raise gland. Non-slip handwheel Insures tight closing.

_ _ _

Principal Pa	arts and	Materials
--------------	----------	-----------

Part	Fig	Material	ASTM		
Body & Bonnet	All	S-1 Steam Bronze	eB61		
Disc	All	Nickel Alloy NT-4	-		
Stem	Rising	Stemalloy, Rod (C69700)	B371		
	Non-Rising	Stemalloy, Cast (C87500)	B584		
Packing All		JC 168 Kevlar -			

LUNKENHEIMER THE ONE (heat NAME IN VALVES

LICENSEE OF LUNKENHEIMER VALVES

CINCINNATI VALVE COMPANY

P.O. BOX 141451 . CINCINNATI, OH 45250-1451 . U.S.A. PHONE: 513-471-8258 . FAX: 513-471-8327

(R)

Dimensions in inches Weights in Pounds

Size	¹ / ₄	³ / ₈	¹ / ₂	³ /4	1	1 ¹ / ₄	1 ¹ / ₂	2	2 ¹ / ₂	3
A Fig 2227	2 ³ / ₁₆	2 ¹ / ₄	$2^{1}/_{2}$	2 ³ / ₄	3 ¹ / ₂	3 ³ / ₄	4 ¹ / ₁₆	4 ⁹ / ₁₆	5 ³ / ₄	6 ¹ / ₄
A Fig 2228 2230	2 ³ / ₁₆	2 ¹ / ₄	2 ¹ / ₂	2 ³ / ₄	3 ¹ / ₁₆	3 ³ / ₈	3 ¹¹ / ₁₆	4 ⁹ / ₁₆	5 ³ / ₈	6
В	-	-	-	-	-	-	_	-	5 ¹¹ / ₁₆	6 ⁷ / ₁₆
E	4 ¹⁵ / ₁₆	4 ¹⁵ / ₁₆	5 ¹³ / ₁₆	7 ¹ / ₁₆	8 ¹ / ₈	9 ⁷ / ₁₆	10 ³ / ₄	13 ¹ / ₁₆	15 ³ / ₈	17 ¹³ / ₁₆
F NRS	4 ¹ / ₁₆	4 ¹ / ₁₆	4 ⁵ / ₈	5 ⁵ / ₈	6	6 ⁷ / ₈	7 ³ / ₄	9	-	-
G	$2^{1}/_{2}$	2 ¹ / ₂	3	3 ¹ / ₂	4 ¹ / ₈	4 ⁵ / ₈	5 ¹ / ₈	5 ¹ / ₂	6	7
Fig 2227 Wts	1.2	1.2	1.8	3.0	5.0	7.0	12.0	17.0	30.0	40.0
Fig 2228 Wts	1.2	1.2	1.8	2.8	3.8	5.6	7.6	12.5	25.0	36.0
Fig 2230 Wts	1.2	1.2	1.8	2.7	3.6	5.1	9.8	12.0	-	-